Mathematics
 Higher level
 Paper 3 - calculus

Friday 18 November 2016 (morning)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the mathematics HL and further mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [60 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 11]

Consider the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}+\left(\frac{2 x}{1+x^{2}}\right) y=x^{2}$, given that $y=2$ when $x=0$.
(a) Show that $1+x^{2}$ is an integrating factor for this differential equation.
(b) Hence solve this differential equation. Give the answer in the form $y=f(x)$.
2. [Maximum mark: 18]
(a) By successive differentiation find the first four non-zero terms in the Maclaurin series for $f(x)=(x+1) \ln (1+x)-x$.
(b) Deduce that, for $n \geq 2$, the coefficient of x^{n} in this series is $(-1)^{n} \frac{1}{n(n-1)}$.
(c) By applying the ratio test, find the radius of convergence for this Maclaurin series.
3. [Maximum mark: 15]
(a) Using l'Hôpital's rule, find $\lim _{x \rightarrow \infty}\left(\frac{\arcsin \left(\frac{1}{\sqrt{(x+1)}}\right)}{\frac{1}{\sqrt{x}}}\right)$.

Consider the infinite spiral of right angle triangles as shown in the following diagram.

The nth triangle in the spiral has central angle θ_{n}, hypotenuse of length a_{n} and opposite side of length 1 , as shown in the diagram. The first right angle triangle is isosceles with the two equal sides being of length 1 .
(b) (i) Find a_{1} and a_{2} and hence write down an expression for a_{n}.
(ii) Show that $\theta_{n}=\arcsin \frac{1}{\sqrt{(n+1)}}$.

Consider the series $\sum_{n=1}^{\infty} \theta_{n}$.
(c) Using a suitable test, determine whether this series converges or diverges.
4. [Maximum mark: 16]
(a) State the mean value theorem for a function that is continuous on the closed interval $[a, b]$ and differentiable on the open interval $] a, b[$.

Let $f(x)$ be a function whose first and second derivatives both exist on the closed interval $[0, h]$.

Let $g(x)=f(h)-f(x)-(h-x) f^{\prime}(x)-\frac{(h-x)^{2}}{h^{2}}\left(f(h)-f(0)-h f^{\prime}(0)\right)$.
(b) (i) Find $g(0)$.
(ii) Find $g(h)$.
(iii) Apply the mean value theorem to the function $g(x)$ on the closed interval $[0, h]$ to show that there exists c in the open interval $] 0, h\left[\right.$ such that $g^{\prime}(c)=0$.
(iv) Find $g^{\prime}(x)$.
(v) Hence show that $-(h-c) f^{\prime \prime}(c)+\frac{2(h-c)}{h^{2}}\left(f(h)-f(0)-h f^{\prime}(0)\right)=0$.
(vi) Deduce that $f(h)=f(0)+h f^{\prime}(0)+\frac{h^{2}}{2} f^{\prime \prime}(c)$.
(c) Hence show that, for $h>0$

$$
\begin{equation*}
1-\cos (h) \leq \frac{h^{2}}{2} . \tag{5}
\end{equation*}
$$

